

Asian Journal of **Cell Biology**

ISSN 1814-0068

Asian Journal of Cell Biology 7 (2): 13-31, 2012 ISSN 1814-0068 / DOI: 10.3923/ajcb.2012.13.31 © 2012 Academic Journals Inc.

Towards a C₄ Rice

¹Govinda Rizal, ¹Shanta Karki, ¹Vivek Thakur, ¹Jolly Chatterjee, ¹Robert A. Coe, ¹Samart Wanchana and ^{1,2}William Paul Quick

¹C₄ Rice Center, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines ²University of Sheffield, Sheffield, United Kingdom

Corresponding Author: Govinda Rizal, C_4 Rice Center, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines

ABSTRACT

The success of the green revolution that began in the 1960s led to an increase in rice yield of up to 10 fold that was sufficient to meet the food demand of a continually growing population. This rapid increase in rice yield has not been repeated even after four decades, while the global population continues to grow rapidly. To meet the food demand of the soaring population, rice yields should increase by at least 50% within next four decades. Despite the best efforts of plant breeders, the prospect of a second drastic increase in yield using conventional approaches is unlikely but may be possible if we redesign rice photosynthesis into C_4 type. A C_4 type of photosynthesis is much more efficient than the C_3 type found in wheat and rice and could facilitate an increase in yield potential to levels found in C₄ crops like sorghum and maize. Although, C₄ plants evolved from the C₃, there are distinct differences in their leaf structure (evolution of Kranz anatomy) and biochemistry. The same would be needed for the development of a C_4 rice plant. In 2009, a consortium of scientists was formed to develop C₄ rice. The consortium is using multiple approaches which include but are not limited to; alteration of genomes of C₃ and C₄ plant species, exploration of wild Oryza accessions and bioinformatics to discover new genes underlying C_4 photosynthesis. The already known or newly discovered genes of C₄ pathway are being systematically introduced into rice. Here we review the strategies adopted by the C₄ rice project coordinated by the International Rice Research Institute.

Key words: C₄ plant, gene discovery, Kranz anatomy, photosynthesis, rice yield

INTRODUCTION

Rice has been cultivated for more than 9,000 years (Molina et al., 2011) and it is the primary source of energy for more than half of the world's population. The well-known green revolution in the 1960s led to an increase in the rice yield from less than 1.5 ton ha⁻¹ (Jennings, 1964) to the present rice yield potential of 8-10 ton ha⁻¹ (Khush, 1995). This increase in food production sustained the simultaneous increase in global population from 3 billion in 1961 to 7 billion within five decades. The population is expected to reach 9 billion in the next four decades. The major portion of this population increase will be in the rice eating areas of Asia and Africa. To harvest enough rice for the booming population, there is a need for new varieties which can sustainably yield higher, under the perceived situation of less land, water and fertilizer inputs amid the predicted extremes of climatic change. Even with the optimum use of input and management practices, the yield potential of the current inbred *indica* varieties does not exceed 10 ton ha⁻¹ (Kropff et al., 1993). One way to overcome the current yield ceiling is by genetically introducing the C₄ photosynthetic pathway in rice (Sheehy et al., 2000). The concepts and practicalities of

redesigning rice photosynthesis are reviewed in three classic books (Raghavendra and Sage, 2011; Sheehy, 2008; Sheehy et al., 2000). A number of reviews have underscored the importance of engineering C₄ pathway in rice (Gowik and Westhoff, 2011; Hibberd and Covshoff, 2010; Kajala et al., 2011b; Langdale, 2011; Matsuoka et al., 2001; Sage and Zhu, 2011). All of these literature highlight that C₄ photosynthesis is much advantageous than C₃ in rice growing areas under high temperature and bright sunshine. This led to the idea to upgrade C_3 rice to C_4 . No doubt this is a complex process as multiple genetic changes are required to alter leaf biochemical and anatomical modifications that occurred during the evolution of C_4 plants from their C_3 ancestors. C_4 photosynthesis has evolved multiple times independently during the evolution of plants (Sage, 2004) and has involved duplication of genomes in whole or part that has created redundancy in genes, evolution of Kranz anatomy, a decrease in number of Mesophyll (M) cells between veins, a spatial shift in the metabolism of M and Bundle Sheath (BS) cells including the relocation of carboxylase enzymes (Gowik and Westhoff, 2011) and evolution of transporters to facilitate metabolic movement between the two cell types (Fig. 1b). The absence of any of these C_4 traits in close relatives of rice prevents its incorporation through classical breeding strategies. The advancements in genetic engineering and plant molecular biology offer great possibilities to incorporate C₄ photosynthesis in rice. While the process of photosynthesis is widely studied in both C₃ and C₄ plants and the introduction of C₄-like metabolism into M cells of C₃ plants has been attempted (Miyao et al., 2011), transforming one photosynthesis type into another is a novel attempt. This review reported the strategies being adopted and progress made towards novel C₄ gene identification and transformation of known genes to integrate C4 photosynthetic system into C_8 rice.

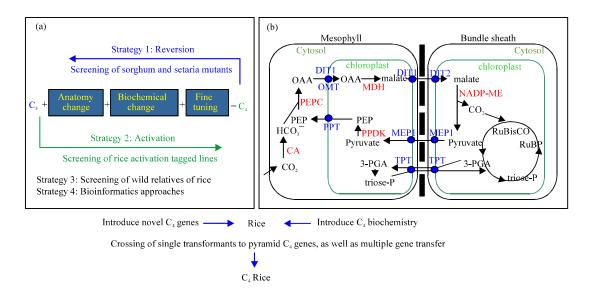


Fig. 1(a-b): Schematic diagram of (a) novel genes related to C₄ pathway, identified by utilizing various resources and (b) the known biochemical components of Nicotinamide adenine dinucleotide phosphate-malic enzyme (NADP-ME) type C₄ pathway, currently being engineered into rice. The core C₄ genes are in red and transporters are in blue color. PGA: Phosphoglycerate, OAA: Oxaloacetic acid, PEP: Phosphoenol pyruvate, Full names of other abbreviations used in the figure are given in Table 1

COMPARISON OF C₃ AND C₄ PHOTOSYNTHETIC PATHWAYS

The C_4 photosynthetic pathway, an evolutionary development from C_3 , has undergone modifications in terms of biochemistry as well as leaf anatomy (Gowik and Westhoff, 2011). Most plants are either C₃ or C₄ depending on the type of photosynthetic pathway they use which are classified based on the first compound formed from the assimilation of atmospheric CO_2 . In C_3 plants, CO₂ is assimilated by Ribulose-1,5-bisphosphate Carboxylase Oxygenase (RuBisCO) and forms 3-phosphoglycerate (3PGA), a 3 carbon compound. The entire process is completed within M cells which are exposed to atmospheric CO₂ via intercellular air spaces and have an abundance of RuBisCO enzyme. RuBisCO fixes both CO₂ and O₂ depending on their availability thereby facilitating both carboxylation and oxygenation reactions. The amount of RuBisCO in C_3 plants is much more than the plant actually uses was evident from an experiment where tobacco plants survived normally when RuBisCO was reduced by up to 50% (Quick et al., 1991). The oxygen ase activity of RuBisCO increases photorespiration and causes energy loss (Edwards et al., 2004) although this can be beneficial in times of stress as a means to dissipate excess energy (Yokota and Shigeoka, 2008). In contrast, RuBisCO in C₄ plants is not expressed in M cells rather its expression is restricted to BS cells. The atmospheric CO_2 is first fixed in M cells by phosphoenolpyruvate carboxylase (PEPC) forming oxaloacetate, an organic compound with 4 carbon units (Fig. 1b). Unlike RuBisCO, PEPC is an oxygen-insensitive carboxylase which has a much higher affinity for CO_2 and can continue carboxylation even when the leaf internal CO_2 concentration is very low (Ku et al., 1996). The CO₂ fixed in the form of 4 carbon acid is transported to BS cells where it is decarboxylated by one of the three decarboxylating enzymes. The CO₂ released after decarboxylation is re-fixed in BS cells by RuBisCO (Fig. 1). This decarboxylation of C_4 acids creates a very high concentration of CO₂ around RuBisCO. This mechanism to concentrate CO₂ in BS cells prevents photo-respiratory oxygenation reactions making C_4 plants generally more productive than C_3 (Peterhansel and Maurino, 2011). Photorespiration is greatly enhanced at higher temperatures due to a lower CO₂/O₂ specificity of the RuBisCO enzyme and the enhanced solubility of oxygen in water compared to CO_2 . Therefore, especially in warmer climates, C_4 plants have elevated photosynthesis compared to C₃ plants in the same ecology (Long, 1999).

The ability of C₃ (rice) and C₄ (sorghum) plants to assimilate photosynthates was studied at different light intensities measured as Photosynthetic Photon Flux Density (PPFD) using infrared gas analyzer. The PPFD was gradually decreased from 2500 μmol_{photon} m⁻² sec⁻¹ to zero, CO₂ was kept constant at 400 ppm, a flow rate of 400 μmol sec⁻¹ was maintained and the leaf temperature was 30°C. It showed that the C₄plants can also utilize maximum level of sunlight because their rate of photosynthesis sharply increases with increasing light intensity and does not appear to saturate (Fig. 2). Radiation Use Efficiency (RUE) is up to 50% higher than that of C₃ due to reduced number of photons required to fix each molecule of CO₂ (Sheehy, 2008). A typical C₄ plant produces 1 g of biomass for every 250-350 g of water transpired, whereas to produce the same quantity of biomass C₃ plants transpire 650-800 g of water (Ehleringer and Monson, 1993). Plants with C₄ photosynthesis are more efficient in using photosynthetic nitrogen than C₃ plants largely due to reduced amounts of RuBisCO protein required to achieve the same rate of photosynthesis (Sage *et al.*, 1987). The C₄ CO₂ concentrating mechanism therefore confers more efficient photosynthesis, combined with greater nitrogen, water and radiation use efficiency and this frequently translates into higher yields in crop plants.

Fig. 2: A comparison between light response curves of a C₄ plant (sorghum) and C₃ plant (rice, IR72) generated using readings obtained from infrared gas analyser

SEARCH FOR GENETIC FACTORS CONTROLLING C4 LEAF ANATOMY

While the metabolic process of photosynthesis has been extensively researched and photosynthetic enzymes well studied, most of the genetic factors regulating C₄ anatomy are still unknown (Langdale, 2011). We have adopted a dual approach to identify these genetic factors. The first approach is to mutate C_4 plants (sorghum and $Setaria\ viridis$) to randomly hit some of the C_4 characteristics and to identify the responsible genetic factors (Fig. 1a). The second approach is to use rice DNA activation tagging to over-express random rice genes and look for C₄-like characteristics (Fig. 1b). Both of these approaches require screening of large populations to find desirable phenotypes. For mass screening of these populations, we searched for induced alterations in leaf Vein Density (VD). The veins of C₄ plants are generally much more closely spaced than C₃ plants. This is required to facilitate the precise spacing of M and BS cells (vein-BS-M-M-BS-vein) and the general requirement for a 1:1 stoichiometry of BS and M cells. Alterations to vein spacing can arise through a number of anatomical changes including alterations to M cell number between the veins, altered BS size and number or increased vein size. All of these are important changes that have occurred in C₄ plants and so identification of genes that disrupt or induce these changes in C₄ (sorghum) or C₃ (rice) respectively could help us to understand how leaf anatomy is regulated at the genetic level. Fortunately, analysis of vein density is a relatively simple procedure that can be undertaken very quickly with a hand-held microscope in the field or laboratory and is suited to screening large populations.

INDUCED MUTATION ALTERS C₄ LEAF ANATOMY

Induced mutations have greatly facilitated gene discovery, the understanding of complex traits and enhanced the speed of novel gene identification. We treated sorghum (Sorghum bicolor (L.) Moench) seeds with Ethyl Methanesulfonate (EMS) and gamma rays separately to generate two mutant populations. Based on the alteration in vein spacing from wild type VD (more than 8 veins mm⁻¹ at the widest part of the youngest fully expanded leaves) to low VD (LVD) (less than

7 veins mm⁻¹), we screened more than 70,000 mutant lines in the M_2 generation. It was found that mutagenesis had caused a reduction in VD, largely due to increased M cell number between the veins, in 24 independent lines that we are currently analyzing in more detail. To reduce the number of non-specific mutations we are currently generating backcrossed (BC₂F₂) populations. To identify mutations a number of techniques are available, such as genotyping single nucleotide polymorphisms (Kwok, 2001), denaturing HPLC (DHPLC) or TILLING (McCallum *et al.*, 2000), endonuclease cleavage method (Oleykowski *et al.*, 1998), cel 1 based TILLING method (Till *et al.*, 2004) and high-resolution melt analysis (Ririe *et al.*, 1997). With the improved speed and reduced cost of large-scale DNA sequencing we have opted for next generation genome sequencing to identify the responsible mutated genes as the reference genome sequence for sorghum-BTx623 is publicly available (Paterson *et al.*, 2009). We are currently analyzing the sequence data and hope to identify the relevant gene or genes that will then be transformed into rice and the mutant sorghum lines to analyze the effects of their expression. This direct approach of mutation discovery quickens the process of gene identification.

EMERGENCE OF C4 CHARACTERISTICS IN MUTANT RICE LINES

The most direct method in functional gene discovery is to look for a correlation between phenotype and genotype within a specific mutant. Elimination or activation of gene function through insertional mutagenesis using transfer DNA (T-DNA) or transposable elements has proven to be an extremely valuable research tool. The foreign DNA acts as a mutagen and a tag for the site of insertion allowing for a function to be assigned to a specific DNA sequence and for genes associated with a specific phenotype to be isolated. The insertion of these elements is a random event and the mutations are stable through multiple generations (Azpiroz-Leehan and Feldmann, 1997). Such approaches have their limitations, particularly when they are compensated by gene redundancy, lethality due to loss of function or where specific unknown conditions are required for the gene activity such as biotic/abiotic stresses. To overcome these limitations modified insertional elements have been developed like the gene trap systems that fuse the tagged gene with a reporter gene, such as β-glucuronidase (GUS) or Green Fluorescent Protein (GFP) (Springer, 2000). Activation tagging technique uses T-DNA or a transposable element containing multimerized Cauliflower Mosaic Virus (CaMV) 35S enhancers. They enhance gene functions in both orientations at considerable distance from their site of insertion. This results in the transcriptional activation of genes and dominant gain-of-function mutations. The resulting mutant phenotypes can reveal the normal function of the gene while the tag facilitates the identification of the location in the genome.

A considerable number of rice mutant resources have been created using chemical mutagenesis (Wu et al., 2005; Till et al., 2007), T-DNA insertion (An et al., 2003; Chen et al., 2003; Chern et al., 2007; Hsing et al., 2007; Jeong et al., 2002, 2006; Mori et al., 2007; Wan et al., 2009; Wu et al., 2003), the retrotransposons Tos17 (Hirochika, 2001), maize transposon Activator/Dissociation (Ac/Ds) elements (Kolesnik et al., 2004; Park et al., 2007; Qu et al., 2008; Upadhyaya et al., 2006), maize enhancer/suppressor mutator elements (En/Spm) (Kumar et al., 2008) and the Full-length cDNA Over-expressor gene (FOX) hunting system (Hakata et al., 2010; Kondou et al., 2009; Nakamura et al., 2007). The first rice genes identified using insertional mutagenesis were discovered simultaneously using forward (Agrawal et al., 2001) and reverse (Takano et al., 2001) genetic screens of separate Tos17 mutant populations. Genes have also subsequently been identified in forward (Jung et al., 2003), reverse (Lee et al., 2003), expression based (Kang et al.,

2005) screens of T-DNA populations and populations utilizing the Ac-Ds transposon (Zhu et al., 2003, 2004) and the FOX-hunting systems (Nakamura et al., 2007) highlighting the value of these resources for functional gene discovery. Databases are available for each of these individual populations as well as databases that combined data from multiple insertional mutagenesis projects such as RiceGE/SIGnAL (http://signal.salk.edu/cgi-bin/RiceGE), OryGenes DB (http://orygenesdb.cirad.fr) and Gramene (http://www.gramene.org). Together these resources represent an extensive and diverse resource in various genetic backgrounds (Droc et al., 2006; Ware et al., 2002). The availability of mutant resources, advanced analytical techniques and the large number of databases aid to the identification of the genes of interest.

We are screening activation insertion mutants from Korea (http://postech.ac.kr/life/pfg/risd/) and Taiwan (http://trim.sinica.edu.tw). While the Korean collection consists of 47,932 T-DNA activation lines in the japonica varieties Dongjin and Hwayoung (Hsing et~al., 2007), the Taiwan collection contains approximately 70,000 T-DNA insertions in the japonica variety, Tainung-67 (Jeong et~al., 2006). Approximately 80,000 Flanking Sequence Tags (FSTs) are available for the Korean population and 25,000 for the Taiwan collection. The aim is to identify mutants with alteration in leaf anatomy that resemble C_4 traits in rice by activation of specific genes. This could lead to the identification of novel genes controlling C_4 leaf anatomy, cell biology and ultra structure. To date approximately 17,000 lines have been screened for mutants with a stable increase in VD. From the two populations more than 60 mutants have been identified with increased VD. In some of these lines, the increase is due to a reduction in the number of M cells between veins, a feature characteristic of C_4 leaf anatomy. Such mutants can be used to identify the genes controlling the phenotype either through sequencing of mutagenised lines and/or transgenic testing of candidate genes. In future we will also screen Ac/Ds mutant lines from Australia (Upadhyaya et~al., 2006) and FOX lines from Japan (Nakamura et~al., 2007).

HARNESSING THE DIVERSITY OF RICE

Rice is one of the cultivated species of genus Oryza of Poaceae family. Genus Oryza is composed of 10 different genomes with 23 wild and 2 cultivated species. Although C₄ evolved independently more than 60 times (Monson, 2003) and there are symptoms of C₄ characteristics in the stem and petiole of C₃ plants like tobacco (Hibberd and Quick, 2002), there are no occurrences of C₄ or C₄-like species within this genus Oryza. However, Oryza possesses a wide range of variation for different traits even among the accessions of a single species. Ram et al. (2007) have reported 56% genetic diversity among its diverse genomes. Among these species, Oryza rufipogon and O. nivara are currently being screened for C₄-traits as these two species have higher intra-species genetic diversity; 46% for O. rufipogon (Gao et al., 2002) and 78% for O. nivara (Juneja et al., 2006) and differences in the branching pattern (Yamaki et al., 2010) and M cell conductance (Scafaro et al., 2011) were found to be correlated with yield and availability of CO₂ for carboxylation, respectively. The advantage of working with wild rice species is the readily available information about genome sequences and genetic resources in Gramene database (http://www.gramene.org), (http://www.shigen.nig.ac.jp/rice/oryzabase/top/top.jsp), Rice-BRCdb brcdb.mpl.ird.fr/brcdb/) and the Oryza Map Alignment Project (OMAP, http://www.omap.org/). A high resolution Universal Core Genetic Map (UCGM) was developed by Orjuela et al. (2010) using 165 anchors and 16 accessions from O. sativa, O. barthii, O. rufipogon, O. glumaepatula and O. meridionalis. This group also developed the Paddy Map for easily generating sets of polymorphic SSR markers in any interspecific or intraspecific cross of Oryza species. Several Chromosomal Segment Substitution Lines (CSSLs) have been developed for rice by small wild rice chromosomal introgressions which were found to be widely useful for identifying QTL and genes for different traits. These resources are still underutilized for physiology and photosynthesis screening. Therefore, there exists huge potential to modulate rice physiology using these resources to improve C₃ photosynthesis of rice or to make it more suitable for C₄ photosynthesis. Many agronomically important traits have already been successfully introgressed into rice by conventional breeding programs (Amante-Bordeos et al., 1992; Brar and Khush, 1997, 2002; Jena, 2010). A wide variation in leaf morphology in wild *Oryza* species provides good reason to explore these materials in more detail that would help in rice leaf anatomy and physiology manipulation. Several studies are ongoing world-wide to look for C_4 -like properties in wild rice. The pioneering work of Yeo et al. (1994) showed increasing PEPcase activity in O. australiensis and much lower photorespiration rate in O. rufipogon, both of which are of direct interest in the study of C₃ to C₄ interconversion. They also observed large differences among Oryza species in transpiration at the single leaf level. Recent studies have shown that there is a wide variation in the photosynthetic characteristics among the wild rice (Zhao et al., 2010). They assessed photosynthesis related traits like net photosynthetic rate, leaf chlorophyll content, specific leaf area, flag leaf area and leaf N_2 concentration and reported higher photosynthetic rates in O. rufipogon and O. australiensis. Both studies suggest O. rufipogon as one of the suitable candidates for improving photosynthesis in rice. At International Rice Research Institute (IRRI), the first attempt of mass screening of wild rice accessions for VD change and lower CO₂ compensation point was carried out in 2008. After mass screening of CO₂ compensation point, we found a reduction in CO₂ compensation point for a few O. nivara accessions. These results indicate that genes responsible for leaf anatomical changes cause changes in observed CO₂ compensation point and could be identified from wild rice relatives and can be used to enhance our C₄ pathway engineering efforts into cultivated rice.

GENOMIC APPROACHES FOR UNDERSTANDING REGULATION OF C_4 PHOTOSYNTHESIS

In a recent study, four key genes of the C_4 pathway were introduced into rice M cells to generate a C_4 cycle between the chloroplast and cytoplasm. Although this did not result in enhanced photosynthesis or reduced compensation point it did demonstrate the possibility to achieve C_4 type photosynthesis in C_3 plants (Taniguchi et al., 2008). With a two cell system, we need to observe the desired cell specific expression patterns, suitable level of expression and activity and the metabolic connectivity of the two cell types. So, it becomes important to also have knowledge of the regulatory network controlling C_4 biochemistry and anatomy. This requires discovery of (1) additional genes working in coordination with the known C_4 genes, (2) transcription factors regulating the activities of genes of network and their respective binding sites and (3) involvement of gene silencing mechanisms. Several functional genomics and bioinformatics approaches have been or are being applied to meet these objectives.

For the discovery of genes associated with any phenotypic trait, gene expression profiling has been one of the most commonly used approaches. Although it was known for a long time that the mature leaves relay signals of environmental cues to new leaves of the same plant (Lake $et\ al.$, 2001), the differential expression within the same leaf are being studied recently (Li $et\ al.$, 2010). Our experimental designs involve comparison of gene expression between (1) C₃ and C₄ leaves, (2)

M and BS cells (3) developmentally distinct regions of a leaf and (4) different growth stages within a leaf. These experimental designs are meant to capture different and/or overlapping biological processes underlying C₄ photosynthesis. A few gene expression data has been generated by microarray analysis (Sawers *et al.*, 2007), however, majority has been generated by next generation sequencing of the transcriptome (RNA-seq), as discussed in detail below.

TRANSCRIPTOMES OF C₃ AND C₄ LEAVES

Comparison of gene expression in leaves of C_3 and C_4 species could identify genes that have turned on or off during the evolution of multiple C_4 species independently, or genes whose overall expression has significantly changed. There are two such studies between C₃ and C₄ species of genera Cleome and Flaveria (Brautigam et al., 2011; Gowik et al., 2011). Choice of such species minimizes the differences in expression due to species-specific features, thus allowing more precise discovery of genes associated with differences in photosynthetic pathway. The findings from both studies unveiled that in addition to the core C_4 pathway, there are several other functional gene classes which are affected (Brautigam et al., 2011). Among the classes which showed lower steady state mRNA level included Calvin-Benson cycle, photorespiration, protein synthesis, primary metabolism, while those which showed higher level included photosynthetic classes of photosystem1 (PSI) and cyclic electron flow, starch metabolism, nitrogen metabolism, cofactor synthesis, glucan metabolism and lipid transfer proteins. There were some deviations too: Flaveria additionally showed downregulation of PSII, attributed to different ATP and NADPH demand related to the different mode of photosynthesis in the two species. Apart from the affected gene classes, some genes were also reported as candidate C₄ genes. The discovery of transporters was most important among them, as they ensure the availability of metabolites to the enzymes present in different cellular compartments. Few plastidic and mitochondrial transport proteins were largely upregulated in C₄ leaf tissue (Brautigam et al., 2011). Among the proteins with regulatory functions, 43 were significantly up-regulated in either C₃ or C₄ Cleome, whereas in Flaveria, several hundreds of such proteins were found to be differentially expressed and some of the important ones include auxin response factor2 (ARF2), golden2 like (GLK2), plastidic Sigma-70 like factors (SIG1 and SIG5) (Gowik et al., 2011). Other genes related to chloroplast positioning, such as giant chloroplast 1 (GC1) and chloroplast unusual positioning 1 (CHUP1) were also reported to be candidates for C_4 -associated genes.

TRANSCRIPTOMES OF MESOPHYLL AND BUNDLE SHEATH CELLS

The comparison between C_3 and C_4 whole leaf tissue is likely to miss genes expressed in different locations (or specific cell types), unlike their expression levels. Consequently to identify such genes, a more appropriate experimental design would be needed. From the perspective of the C_4 pathway, isolation of RNA from M and BS cells separately are obvious choices. The findings in the case of maize by using either microarray or RNA-seq showed that about one-fifth of genes, expressed in leaves, are differentially expressed between M and BS cells (Sawers et al., 2007; Li et al., 2010). Several functional classes were partitioned between the two cell types including light harvesting complexes, respiration, secondary metabolism and transport. Comparison of the transcriptome data with proteome datasets of maize plastids (Friso et al., 2010) showed near-perfect correspondence between cell-specific enrichment and high correlation between differential expression (0.68<r<0.98) (Li et al., 2010). This indicates that genes involved in C_4 photosynthesis are largely regulated at the transcriptional level.

TRANSCRIPTOMES ACROSS LEAF DEVELOPMENTAL GRADIENT

In addition to identifying genes involved in functioning of the photosynthetic pathway, it is also important to understand the factors involved in leaf development. This will help in identifying factors involved early in leaf development for building the cellular infrastructure where photosynthesis could operate. One such study was conducted by Li et al. (2010) in maize leaves examining the expression profile of genes in four developmentally distinct segments, namely basal, transitional, maturing and matured zones. While the fraction of functional genes was slightly higher in segment undergoing development (leaf base) compared to the fully mature segment, alternate splicing events were observed in about half of the expressed genes with introns. About eighteen distinct expression profiles were identified; six of them were considered main clusters accounting for 82% of the total genes expressed. Two clusters represented genes that are expressed at the highest levels towards the basal zone and include genes that encode enzymes for cell wall biosynthesis, DNA synthesis, cell cycle regulation and chromatin structure, protein metabolism, potential signaling proteins, auxin and brassinosteroid biosynthesis and signaling, respiratory pathways and vesicle transport. A marked change in the nature of enriched functional categories was observed for cluster showing peak expression of genes in the transition zone. Similarly, in the maturing or matured segments, the enriched gene classes included isoprenoid biosynthesis, the Calvin cycle, redox regulation and the light reactions of photosynthesis (Li et al., 2010).

REGULATORY ELEMENTS ASSOCIATED WITH C_4 GENES

Known regulatory elements are often of poor resolution: The cell-specific expression in M and BS cells is generated by both transcriptional and post-transcriptional mechanisms and only for some of the C₄ enzymes is the mode of regulation known, at least partially (Hibberd and Covshoff, 2010). For the regulation at the transcriptional level, cis-regulatory elements form a key component and these often reside in the range of 0.5-2 kb upstream of the transcriptional start site. Here we summarize the available information about transcriptional regulation of C₄ related genes that involve cis-elements. In the case of PEPC, in C_4 Flaveria, a 41 bp long region named M-enhancing module (MEM1) has been identified which drives expression in M cells (Gowik et al., 2004; Akyildiz et al., 2007). This module is located in the distal region of the core promoter and is constituted of a tetranucleotide (CACT) insertion and a nucleotide substitution (G→A). In maize, however, the M cell specificity is attributed both to a 0.6 kb upstream region (Taniguchi et al., 2000; Kausch et al., 2001) and some epigenetic modifications (Langdale et al., 1991). For PPDK, while in maize a very specific region (-301 to -296 from translational start site) is reported to be important (Matsuoka and Numazawa, 1991), in C_4 Flaveria a 1 kb long region (-1212 to +279 from transcriptional start site) accounts for higher M cell expression relative to BS cells (Rosche et al., 1998). For NADP-ME, the behavior of two C₄ Flaveria species were different and the one showing transcriptional regulation, namely F. trinervia, required a 2 kb region (-1758 to +305 from translational start site) for strong BS-specific expression (Lai et al., 2002). Like NADP-ME, the regulation of small subunit of RuBisCO was found to be complex and different regions for M cell repression and BS expression were reported (Viret et al., 1994). Other C_4 genes are currently being studied within the C₄ Rice program to derive more cell specific promoters with appropriate expression levels.

PREEXISTING ELEMENTS RECRUITED FOR CELL SPECIFIC EXPRESSION OF C_4 GENES

Recent studies on the origin of cis-elements recruited by C_4 genes have unveiled some interesting findings. Based on the experiments on NAD-ME and NADP-ME, it was reported that

genes from C_3 species contain cis-elements sufficient for BS specificity in C_4 leaves (Brown $et\ al.$, 2011). The cis-elements were found to be located in the coding region and required to be transcribed to be functional which strongly suggest a post-transcriptional nature of regulation (Brown $et\ al.$, 2011). When the hypothesis was tested in two more C_4 genes, namely PPDK and CA, one or both Untranslated Regions (UTRs) were found to be sufficient for enhanced expression in M cells (Kajala $et\ al.$, 2011a).

DISCOVERY OF CIS-ELEMENTS

The locations of cis-elements of several C_4 genes are available but at a poor resolution. For a successful transplantation of C_4 pathway in rice we would require high resolution information about these cis-elements. The experimental approach of promoter-deletion assay provides reliable information, however, is of poor resolution in terms of location and requires significant research efforts. In silico approaches greatly help in accelerating their discovery using the prior information with improved accuracy. The recent findings on the presence of cis-elements in the transcript region (Brown $et\ al.$, 2011; Kajala $et\ al.$, 2011a) will further prevent the typical searches from being restricted only to the upstream regions. Availability of relevant gene expression data between photosynthetic cell types, C_8/C_4 leaf tissues and across the developmental gradients has helped in identification of co-expression clusters which in turn could be used for cis-element prediction. Moreover, the availability of draft genome sequences of various grass species like maize, sorghum and Setaria, also allows for sequence conservation studies of the upstream sequences housing the regulatory elements.

GENE SILENCING: EPIGENETICS AND NON-CODING RNAS

 C_4 differentiation occurs along a developmental gradient with undeveloped proplastids found in cells at the leaf base and fully differentiated C_4 M and BS chloroplasts at the leaf tip (Li et al., 2010). C_4 -specific genes were recruited from existing C_3 genes to encode the components necessary to the C_4 mechanism. A true C_4 cycle requires the co-ordinated activity of multiple enzymes in different cell types and in response to diverse environmental and metabolic stimuli. The selective expression of specific C_4 pathway genes in specific cell types requires multiple levels of regulation. Although cis-acting DNA elements are important for gene regulation, chromatin configuration also plays a vital role. The expression of PEPC has been linked to epigenetic control, histone modification and chromatin remodeling in maize (Danker et al., 2008). These histone modifications significantly contribute to gene regulation by acetylation of specific histone lysine residues. Interestingly, this pattern is not dependent on gene activity, but is already established in etiolated plants. Cell-type specific chromatin modifications potentiate subsequent light activation of transcription during differentiation of photosynthetic tissues in C_4 plants.

There is another gene regulatory mechanism which is likely to be involved in functioning of C₄ specific features: the down-regulation of gene expression through non-coding RNAs (ncRNAs). Among various ncRNA types, the micro RNAs (miRNAs) are relatively well characterized and often show conservation across plant and animal species (Jones-Rhoades *et al.*, 2006). Since majority of miRNA families have been reported to be involved in plant development including the vascular development (Jones-Rhoades *et al.*, 2006; Rubio-Somoza and Weigel, 2011), their role in development of Kranz anatomy and down-regulation of photosynthesis related genes cannot be ruled out. To investigate this aspect, small RNA sequencing of appropriate leaf samples is being

pursued within the C_4 consortium. The sequencing data will further be analyzed to discover novel and existing miRNAs, for which a protocol is in place for high accuracy prediction of plant miRNAs from deep-sequencing data (Thakur *et al.*, 2011).

MOLECULAR ENGINEERING APPROACHES TOWARDS DEVELOPMENT OF C₄ RICE Introducing C_4 photosynthesis genes into rice: In the past there have been attempts to transfer C_4 traits into C_8 plants by conventional plant hybridization between the two species. This approach was useful for a limited number of plant genera such as Atriplex, Brassica, Panicum, Moricandia and Flaveria (Brown and Bouton, 1993). Unfortunately, most of those C₃-C₄ hybrids showed infertility due to abnormal chromosome pairing and other genetic barriers. Because many of the major traits associated with C₄ photosynthesis are absent from all rice species assessed to date and wide hybridization between sorghum and rice, oat and maize failed to transfer the C_4 cycle as a whole, the use of conventional breeding to achieve this goal seems unlikely. Therefore, a genetic engineering approach seems to be the most appropriate technology to transfer C₄ traits into C₈ plants. Although isoforms of genes encoding C₄ enzymes are also present in C₃ plants, they are usually expressed at very low levels and in the wrong cell types. Recent developments in plant molecular biology and genetic engineering have made it possible to introduce the desired genes encoding C₄ enzymes into C₈ plants using transgenic techniques (Matsuoka et al., 2001; Miyao et al., 2011). These efforts have deepened our understanding of the mechanism of C₄ photosynthesis and provided valuable information about the functions and evolution of these C₄ genes. This has enabled scientists to express enzymes involved in the C_4 pathway at high levels comparable to C₄ species and in desired locations even in the leaves of C₃ plants. C₄ photosynthesis depends on synchronized division of labor between M and BS cells which is achieved by differential expression of the genes encoding the enzymes and transporters of the C₄ pathway. Based on primary C₄ acid decarboxylating enzymes used, the C₄ pathway is divided into 3 subtypes: NAD-malic enzyme, NADP-malic enzyme and PEP carboxykinase types (Huber and Edwards, 1975). In a typical NADP-ME C_4 type plant, e.g maize, 21% of genes are differentially expressed between BS and M cells (Li et al., 2010). Promoters with BS or M specific activity from the C₄ grasses can be used to drive tissue specific transgene expression in rice leaves. For example, the promoter of PEPCK gene from Zoysia japonica fused with β-glucuronidase expressed selectively in vascular tissues and BS cells of transgenic rice (Nomura et al., 2005). This result demonstrates that some of the C₄ specific genes localized in BS cells can retain their property of cell specificity even in a C₃ plant suggesting that C₃ plants still possess a regulatory mechanism for gene expression of BS cell specific C_4 genes at their correct sites.

Agrobacterium mediated transformation of immature embryos of indica rice varieties has proven to be highly efficient (Hiei and Komari, 2006). This has made it possible to introduce C_4 genes into the indica rice varieties unlike in the past where most of the transgenic plants with C_4 genes were developed using japonica varieties such as Kitaake (Ku et~al., 1999; Fukayama et~al., 2001; Taniguchi et~al., 2008). One of the major objectives of developing C_4 rice is to enable it to perform efficient photosynthesis under higher temperature and reduced water conditions. As indica rice varieties are more widely cultivated under such conditions, introduction of the C_4 pathway is more beneficial. We have chosen IR64, a high yielding indica variety to insert the well characterized C_4 genes such as PEPC, PPDK, NADP-ME and MDH from maize following the Agrobacterium mediated genetic transformation protocol of Hiei and Komari (2006). The C_4 cycle cannot be established only with these core C_4 enzymes (Miyao et~al., 2011). Therefore, we aim to

Table 1: Summary of genes being transformed into rice to build NADP-ME type of C₄ photosynthesis

Gene name	Function	References
Carbonic anhydrase (CA)	Conversion of CO_2 to bicarbonate (HCO_3^-) in the cytosol of M cells	Ku et al. (1996)
Phosphoenolpyruvate carboxylase	Catalyses the formation of oxaloacetate (OAA) using $\mathrm{HCO_3}^-$ and	Ku et al. (1996)
(PEPC)	Phosphoenolpyruvate (PEP) in M cells	
Dicarboxylate translocator 1 (DiT1)	Exchanges OAA with malate in M cells	Taniguchi et al. (2000)
2-oxoglutarate/malate transporter	OAA transporter across the chloroplast membranes of M cells	Taniguchi et al. (2000)
(OMT)		
Malate dehydrogenase (MDH)	Catalyses the reduction of OAA to malate in chloroplasts of M cells	Agostino et al. (1992)
Dicarboxylate translocator 2 (DiT2)	Exchanges Glutamate with malate in BS cells	Brautigam et al. (2011)
NADP-malic enzyme (NADP-ME)	Decarboxylation of malate in chloroplasts of BS cells	Ku et al. (1996)
Mesophyll envelope protein 1 (MEP1)	Transport of pyruvate in chloroplasts of M and BS cells	Brautigam et al. (2011)
Pyruvate, orthophosphate dikinase	Conversion of pyruvate to PEP in chloroplasts of M cells	Ku et al. (1996)
(PPDK)		
Phosphoenolpyruvate/phosphate	Imports PEP from cytosol	Brautigam et al. (2011)
translocator (PPT)		
Triosephosphate/phosphate	Transports triosephosphate in a 1:1 counter exchange	Brautigam et al. (2011)
transporter (TPT)	with phosphate	
Ribulose-1,5-bisphosphate	Refixation of CO_2 in chloroplasts of BS cells	Hatch (1987) and Kanai
carboxylase/oxygenase (RuBisCO)		and Edwards (1999)

ensure a proper facilitation of exchange of metabolite fluxes into and out of the M and BS cells by inserting the appropriate transporters of the C_4 pathway (Table 1). Efficient functioning of the induced C_4 cycle in rice will call for a cell type specific suppression of some of the endogenous rice genes. The obvious one is RuBisCO which will be down-regulated in the M cells and over-expressed in BS cells. Other such genes include the subunits of glycine decarboxylase that are involved in the photorespiration.

FOREIGN GENE STABILITY IN THE RICE GENOME

Evidence of stability of alien C_4 genes and their expression have been reported by a number of earlier attempts to place C_4 genes into C_3 plants such as rice (Taniguchi et al., 2008), Arabidopsis (Ishimaru et al., 1997) and tobacco (Gallardo et al., 1995). In rice, several C_4 genes have been successfully transformed from maize and other closely related C_4 species that have stably integrated into its genome and expressed over several generations (Taniguchi et al., 2008). Furthermore, we have T_3 transgenic rice plants harbouring PPDK and PEPC genes from maize that have been constantly expressing the ZmPPDK and ZmPEPC protein over the three consecutive generations. Introducing the C_4 genes from phylogenetically close species aids stable integration and expression of the transgenes in the host genome.

PYRAMIDING OF C₄ GENES

Transfer of C_4 photosynthetic metabolic pathway to non- C_4 species would not be complete unless all associated genetic factors are fully inserted in one plant. Multiple transgenes can be stacked in a single plant by crossing of individual transgenic lines and/or by sequential transformation. This strategy of transforming one gene at a time, generating homozygous lines for each and then successive rounds of crossing or sequential transformations to pyramid the necessary C_4 genes in rice might prove to be very time and labour consuming process. Moreover, multiple integration sites would further complicate production of homozygous lines. Once each gene has been transformed

and tested in isolation, a multigene engineering approach could be very useful to simultaneously transfer many of the C_4 genes into rice that would allow us to express multimeric proteins and study the complex genetic regulations. Emerging techniques such as artificial plant chromosome engineering (Naqvi et al., 2009), recombination-assisted multifunctional DNA assembly platform (RMDAP) (Ma et al., 2011), transcription activator like (TAL) effectors (Scholze and Boch, 2011) and zinc finger nuclease (Zeevi et al., 2012) could be applicable. Although none of the above technologies have yet been extensively tested in rice, availability of these novel tools offers new avenues for the C_4 rice engineering program.

Transgenic plants with stable and appropriate level of expression of introduced C_4 genes (Table 1) will be intercrossed. A prototype C_4 rice plant will contain all the known C_4 genes. To ensure proper functioning of the engineered C_4 cycle, it will require detailed molecular, biochemical and physiological characterizations. The biochemistry will need to be assayed for correct level of enzyme function and carbon fixation in order to confirm a successful C_4 cycle activity. The major physiological processes, such as gas exchange and efficiency of photochemistry will need to be analyzed. The proteome, transcriptome and metabolome should also be checked to ensure that the C_4 metabolic system is well in place.

CONCLUSIONS

Given the access to advanced technologies and sustainable funding, two decades should be enough time to produce C_4 rice. However, the immediate need for the next green revolution, volatile rice markets and intensive media coverage is compelling researchers to try even harder for a faster output. The C_4 rice project under the aegis of C_4 consortium has successfully completed the first phase during which molecular tools development, infrastructure development, recruitment of scientists and researchers were completed. More importantly, mass screening of sorghum mutants and establishment of efficient rice transformation system were accomplished. The target in coming years is to transform rice with novel C_4 genes and pyramid all C_4 genes into a prototype either by multigene transfer or by multiple crossing or both.

ACKNOWLEDGMENTS

The research on C_4 rice is led by International Rice Research Institute and is financially supported by the Bill and Melinda Gates foundation.

REFERENCES

- Agostino, A., P. Jeffrey and M.D. Hatch, 1992. Amino acid sequence and molecular weight of native NADP malate dehydrogenase from C₄ plant *Zea mays*. Plant Physiol., 98: 1506-1510.
- Agrawal, G.K., M. Yamazaki, M. Kobayashi, R. Hirochika, A. Miyao and H. Hirochika, 2001. Screening of the rice viviparous mutants generated by endogenous retrotransposon *Tos17* insertion. Tagging of a zeaxanthin epoxidase gene and a novel *OsTATC* gene. Plant Physiol., 125: 1248-1257.
- Akyildiz, M., U. Gowik, S. Engelmann, M. Koczor, M. Streubel and P. Westhoff, 2007. Evolution and function of a cis-regulatory module for mesophyll-specific gene expression in the C_4 dicot *Flaveria trinervia*. Plant Cell, 19: 3391-3402.
- Amante-Bordeos, A., L.A. Sitch, R. Nelson, R.D. Dalmacio, N.P. Oliva, H. Aswidinnoor and H. Leung, 1992. Transfer of bacterial blight and blast resistance from the tetraploid wild rice *Oryza minuta* to cultivated rice, *Oryza sativa*. Theor. Applied Genet., 84: 345-354.

- An, S., S. Park, D.H. Jeong, D.Y. Lee and H.G. Kang *et al.*, 2003. Generation and analysis of end sequence database for T-DNA tagging lines in rice. Plant Physiol., 133: 2040-2047.
- Azpiroz-Leehan, R. and K.A. Feldmann, 1997. T-DNA insertion mutagenesis in *Arabidopsis*: Going back and forth. Trends Genet., 13: 152-156.
- Brar, D.S. and G.S. Khush, 1997. Alien introgression in rice. Plant Mol. Biol., 35: 35-47.
- Brar, D.S. and G.S. Khush, 2002. Transferring Genes from Wild Species into Rice. In: Quantitative Genetics, Genomics and Plant Breeding, Kang, M.S. (Ed.). CAB International, Wallingford, UK., ISBN: 978-0851996011, pp: 197-217.
- Brautigam, A., K. Kajala, J. Wullenweber, M. Sommer and D. Gagneul *et al.*, 2011. An mRNA blueprint for C_4 photosynthesis derived from comparative transcriptomics of closely related C_3 and C_4 species. Plant Physiol., 155: 142-156.
- Brown, N.J., C.A. Newell, S. Stanley, J.E. Chen, A.J. Perrin, K. Kajala and J.M. Hibberd, 2011. Independent and parallel recruitment of preexisting mechanisms underlying C₄ photosynthesis. Science, 331: 1436-1439.
- Brown, R.H. and J.H. Bouton, 1993. Physiology and genetics of interspecific hybrids between photosynthetic types. Annu. Revi. Plant Physiol. Plant Mol. Biol., 44: 435-456.
- Chen, S., W. Jin, M. Wang, F. Zhang and J. Zhou *et al.*, 2003. Distribution and characterization of over 1000 T-DNA tags in rice genome. Plant J., 36: 105-113.
- Chern, C.G., M.J. Fan, S.M. Yu, A.L. Hour and P.C. Lu *et al.*, 2007. A rice phenomics study-phenotype scoring and seed propagation of a T-DNA insertion-induced rice mutant population. Plant Mol. Biol., 65: 427-438.
- Danker, T., B. Dreesen, S. Offermann, I. Horst and C. Peterhaensel, 2008. Developmental information but not promoter activity controls the methylation state of histone H3 lysine 4 on two photosynthetic genes in maize. Plant J., 53: 465-474.
- Droc, G., M. Ruiz, P. Marmande, A. Pereira and P. Piffanelli *et al.*, 2006. OryGenesDB: A database for rice reverse genetics. Nucleic Acids Res., 34: D736-D740.
- Edwards, G.E., V.R. Franceschi and E.V. Voznesenskaya, 2004. Single-cell C₄ photosynthesis versus dual-cell (Kranz) paradigm. Ann. Rev. Plant Biol., 55: 173-196.
- Ehleringer, J.R. and R.K. Monson, 1993. Evolutionary and ecological aspects of photosynthetic pathway variation. Annu. Rev. Ecol. Syst., 24: 411-439.
- Friso, G., W. Majeran, M. Huang, Q. Sun and K.J. van Wijk, 2010. Reconstruction of metabolic pathways, protein expression and homeostasis machineries across maize bundle sheath and mesophyll chloroplasts: Large-scale quantitative proteomics using the first maize genome assembly. Plant Physiol., 152: 1219-1250.
- Fukayama, H., H. Tsuchida, S. Agarie, M. Nomura and H. Onodera *et al.*, 2001. Significant accumulation of C4-specific pyruvate, orthophosphate dikinase in a C₃ plant, rice. Plant Physiol., 127: 1136-1146.
- Gallardo, F., M. Miginiac-Maslow, R.S. Sangwan, P. Decottignies and E. Keryer *et al.*, 1995. Monocotyledonous C₄ NADP⁺-malate dehydrogenase is efficiently synthesized, targeted to chloroplasts and processed to an active form in transgenic plants of the C₃ dicotyledon tobacco. Planta, 197: 324-332.
- Gao, L.Z., B.A. Schaal, C.H. Zhang, J.Z. Jia and Y.S. Dong, 2002. Assessment of population genetic structure in common wild rice *Oryza rufipogon* Griff. Using microsatellite and allozyme markers. Theor. Applied Genet., 106: 173-180.

- Gowik, U., J. Burscheidt, M. Akyildiz, U. Schlue, M. Koczor, M. Streubel and P. Westhoff, 2004. cis-regulatory elements for mesophyll-specific gene expression in the C₄ plant *Flaveria trinervia*, the promoter of the C4 phosphoenolpyruvate carboxylase gene. Plant Cell, 16: 1077-1090.
- Gowik, U. and P. Westhoff, 2011. The path from C_3 to C_4 photosynthesis. Plant Physiol., 155: 56-63.
- Gowik, U., A. Brautigam, K.L. Weber, A.P. Weber and P. Westhoff, 2011. Evolution of C₄ photosynthesis in the genus *Flaveria*: How many and which genes does it take to make C₄? Plant Cell, 23: 2087-2105.
- Hakata, M., H. Nakamura, K. Iida-Okada, A. Miyao and M. Kajikawa *et al.*, 2010. Production and characterization of a large population of cDNA-overexpressing transgenic rice plants using Gateway-based full-length cDNA expression libraries. Breed. Sci., 60: 575-585.
- Hatch, M.D., 1987. C₄ photosynthesis: A unique blend of modified biochemistry, anatomy and ultrastructure. Biochim. Biophys. Acta, 895: 81-106.
- Hibberd, J.M. and W.P. Quick, 2002. Characteristics of C_4 photosynthesis in stems and petioles of C_8 flowering plants. Nature, 415: 451-454.
- Hibberd, J.M. and S. Covshoff, 2010. The regulation of gene expression required for C₄ photosynthesis. Annu. Rev. Plant Biol., 61: 181-207.
- Hiei, Y. and K. Komari, 2006. Improved protocols for transformation of indica rice mediated by *Agrobacterium tumefaciens*. Plant Cell Tissue Org. Cult., 85: 271-283.
- Hirochika, H., 2001. Contribution to the *Tos17* retrotransposon to rice functional genomics. Curr. Opin. Plant Biol., 4: 118-122.
- Hsing, Y.I., C.G. Chern, M.J. Fan, P.C. Lu and K.T. Chen *et al.*, 2007. A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol. Biol., 63: 351-364.
- Huber, S.C. and G.E. Edwards, 1975. Regulation of oxaloacetate, aspartate and malate formation in mesophyll protoplast extracts of three types of C₄ plants. Plant Physiol., 56: 324-331.
- Ishimaru, K., H. Ichikawa, M. Matsuoka and R. Ohsugi, 1997. Analysis of a C₄ maize pyruvate, orthophosphate dikinase expressed in C₃ transgenic *Arabidopsis* plants. Plant Sci., 129: 57-64.
- Jena, K.K., 2010. The species of the genus *Oryza* and transfer of useful genes from wild species into cultivated rice, *O. sativa*. Breed. Sci., 60: 518-523.
- Jennings, P.R., 1964. Plant type as a rice breeding objective. Crop Sci., 45: 13-15.
- Jeong, D.H., S. An, H.G. Kang, S. Moon and J.J. Han *et al.*, 2002. T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol., 130: 1636-1644.
- Jeong, D.H., S. An, S. Park, H.G. Kang and G.G. Park *et al.*, 2006. Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J., 45: 123-132.
- Jones-Rhoades, M.W, D.P. Bartel and B. Bartel, 2006. MicroRNAS and their regulatory roles in plants. Annu. Rev. Plant Biol., 57: 19-53.
- Juneja, S., A. Das, S.V. Joshi, S. Subhash and Y. Vikal et al., 2006. Oryza nivara (Sharma et Shastry) the progenitor of O. sativa (L.) subspecies indica harbours rich genetic diversity as measured by SSR markers. Curr. Sci., 91: 1079-1085.
- Jung, K.H., J. Hur, C.H. Ryu, Y. Choi, Y.Y. Chung, A. Miyao, H. Hirochika and G. An, 2003. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol., 44: 463-472.
- Kajala, K., N.J. Brown, B.P. Williams, P. Borrill, L.E. Taylor and J.M. Hibberd, 2011a. Multiple *Arabidopsis* genes primed for recruitment into C₄ photosynthesis. The Plant J., 69: 47-56.

- Kajala, K., S. Covshoff, S. Karki, H. Woodfield and B.J. Tolley *et al.*, 2011b. Strategies for engineering a two-celled C₄ photosynthetic pathway into rice. J. Exp. Bot., 62: 3001-3010.
- Kanai, R. and G.E. Edwards, 1999. The Biochemistry of C₄ Photosynthesis. In: C₄ Plant Biology, Sage, R.F. and R.K. Monson (Eds.). Academic Press, New York, USA., pp: 49-87.
- Kang, H.G., S. Park, M. Matsuoka and G. An, 2005. White-core endosperm *Floury endosperm-4* in rice is generated by knockout mutations in the C-type pyruvate orthophosphate dikinase gene (OsPPDKB). Plant J., 42: 901-911.
- Kausch, A.P., T.P. Owen Jr., S.J. Zachwieja, A.R. Flynn and J. Sheen, 2001. Mesophyll-specific, light and metabolic regulation of the C₄*PPCZm1* promoter in transgenic maize. Plant Mol. Biol., 45: 1-15.
- Khush, G.S., 1995. Breaking the yield barrier of rice. Geo J., 35: 329-332.
- Kolesnik, T., I. Szeverenyi, D. Bachmann, C.S. Kumar and S. Jiang et al., 2004. Establishing an efficient Ac/Ds tagging system in rice: Large-scale analysis of Ds flanking sequences. Plant J., 37: 301-314.
- Kondou, Y., M. Higuchi, S. Takahashi, T. Sakurai and T. Ichikawa *et al.*, 2009. Systematic approaches to u sing the FOX hunting system to identify useful rice genes. Plant J., 57: 883-894.
- Kropff, M.J., K.G. Cassman, H.H. van Laar and S. Peng, 1993. Nitrogen and yield potential of irrigated rice. Plant Soil, 155-156: 391-394.
- Ku, M.S., Y. Kano and M. Matsuoka, 1996. Evolution and expression of C_4 photosynthesis genes. Plant Physiol., 111: 949-957.
- Ku, M.S.B., S. Agarie, M. Nomura, H. Fukayama and H. Tsuchida *et al.*, 1999. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat. Biotechnol., 17: 76-80.
- Kumar, C.S., R.A. Wing and V. Sundaresan, 2008. Efficient insertional mutagenesis in rice using the maize En/Spm elements. Plant J., 44: 879-892.
- Kwok, P.Y., 2001. Methods for genotyping single nucleotide polymorphisms. Annu. Rev. Genomics Hum. Genet., 2: 235-258.
- Lai, L.B., S.L. Tausta and T.M. Nelson, 2002. Distinct but conserved functions for two chloroplastic NADP-malic enzyme isoforms in C₃ and C₄ Flaveria species. Plant Physiol., 128: 125-139.
- Lake, J.A., W.P. Quick, D.J. Beerling and F.I. Woodward, 2001. Plant development: Signals from mature to new leaves. Nature, 411:154. Doi 10.1038/35075660.
- Langdale, J.A., W.C. Taylor and T. Nelson, 1991. Cell-specific accumulation of maize phosphoenolpyruvate carboxylase is correlated with demethylation at a specific site greater than 3 kb upstream of the gene. Mol. Gen. Genet., 225: 49-55.
- Langdale, J.A., 2011. C_4 cycles: Past, present and future research on C_4 photosynthesis. The Plant Cells, 23: 3879-3892.
- Lee, S., J. Kim, J.S. Son, J. Nam and D.H. Jeong *et al.*, 2003. Systematic reverse genetic screening of T-DNA tagged genes in rice for functional genomic analyses: MADS-box genes as a test case. Plant Cell Physiol., 44: 1403-1411.
- Li, P., L. Ponnala, N. Gandotra, L. Wang and Y. Si *et al.*, 2010. The developmental dynamics of the maize leaf transcriptome. Nat. Genet., 42: 1060-1067.
- Long, S.P., 1999. Environment Responses. In: C4 Plant Biology, Sage, R.F. and R.K. Monsoon (Eds.), Academic Press, San Diego, CA, USA., ISBN: 9780126144406, pp: 215-249.

- Ma, L., J. Dong, Y. Jin, M. Chen. X. Shen and T. Wang, 2011. RMDAP: A versatile, ready-to-use toolbox for multigene genetic transformation. PLoS One, Vol. 6.
- Matsuoka, M. and T. Numazawa, 1991. Cis-acting elements in the pyruvate, orthophosphate dikinase gene from maize. Mol. Gen. Genet., 228: 143-152.
- Matsuoka, M., R.T. Furbank, H. Fukayama and M. Miyao, 2001. Molecular engineering of C₄ photosynthesis. Ann. Rev. Plant Physiol. Plant Mol. Bio., 52: 297-314.
- McCallum, C.M., L. Comai, E.A. Grene and S. Henikoff, 2000. Targeting Induced Local Lesions IN Genomes (TILLING) for plant functional genomics. Plant Physiol., 123: 439-442.
- Miyao, M., C. Masumoto, S. I. Miyazawa and H. Fukayama, 2011. Lessons from engineering a single-cell C4 photosynthetic pathway into rice. J. Exp. Botany, 62: 3021-3029.
- Molina, J., M. Sikora, N. Garud, J.M. Flowers and S. Rubinstein *et al.*, 2011. Molecular evidence for a single evolutionary origin of domesticated rice. PNAS, 108: 8351-8356.
- Monson, R.K., 2003. Gene duplication, neofunctionalization and the evolution of C4 photosynthesis. Int. J. Plant Sci., 164: 43-54.
- Mori, M., C. Tomita, K. Sugimoto, M. Hasegawa and N. Hayashi *et al.*, 2007. Isolation and molecular characterization of a Spotted leaf 18 mutant by modified activation-tagging in rice. Plant Mol. Biol., 63: 847-860.
- Nakamura, H., M. Hakata, K. Amano, A. Miyao and N. Toki *et al.*, 2007. A genome-wide gain-of function analysis of rice genes using the FOX-hunting system. Plant Mol. Biol., 65: 357-371.
- Naqvi, S., G Farre, G. Sanahuja, T. Capell, C. Zhu and P. Christou, 2009. When more is better: Multigene engineering in plants. Trends Plant Sci., 15: 48-56.
- Nomura, M., T. Higuchi, Y. Ishida, S. Ohta and T. Komari *et al.*, 2005. Differential expression pattern of C4 bundle sheath expression genes in rice, a C3 plant. Plant Cell Physiol., 46: 754-761.
- Oleykowski, C.A., C.R.B. Mullins, A.K. Godwin and A.T. Yeung, 1998. Mutation detection using a novel plant endonuclease. Nucleic Acids Res., 26: 4597-4602.
- Orjuela, J., A. Garavito, M. Bouniol, J.D. Arbelaez, L. Moreno *et al.*, 2010. A universal core genetic map for rice. Theor. Appl. Genet., 120: 563-572.
- Park, S.H., N.S. Jun, C.M. Kim, T.Y. Oh and J. Huang *et al.*, 2007. Analysis of gene-trap Ds rice populations in Korea. Plant Mol. Biol., 65: 373-384.
- Paterson, A.H., J.E. Bowers, R. Bruggmann, I. Dubchak and J. Grimwood *et al.*, 2009. The *Sorghum bicolor* genome and diversification of grasses. Nature, 457: 551-556.
- Peterhansel, C. and V.G. Maurino, 2011. Photorespiration redesigned. Plant Physiol., 155: 49-55.
- Qu, S., A. Desai, R. Wing and V. Sundaresan, 2008. A versatile transposon-based activation tag vector system for functional genomics in cereals and other monocot plants. Plant Physiol., 146: 189-199.
- Quick, W.P., U. Schurr, K. Fichtner, E.D. Shulze, S.R. Rodermel, L. Bogorad and M. Stitt, 1991. The impact of decreased RuBisCO on photosynthesis, growth, allocation and storage in tobacco plants which have been transformed with antisense rbcS. Plant J., 1: 51-58.
- Raghavendra, A.S. and R.F. Sage, 2011. C₄ Photosynthesis and Related CO₂ Concentrating Mechanisms. 1st Edn., Springer, New York, Pages: 410.
- Ram, S.G., V. Thiruvengadam and K.K. Vinod, 2007. Genetic diversity among cultivars, landraces and wild relatives of rice as revealed by microsatellite markers. J. Applied Genet., 48: 337-345.
- Ririe, K.M., R.P. Rasmussen and C.T. Wittwer, 1997. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal. Biochem., 245: 154-160.

- Rosche, E., J. Chitty, P. Westhoff and W.C. Taylor, 1998. Analysis of promoter activity for the gene encoding pyruvate orthophosphate dikinase in stably transformed C₄ *Flaveria* species. Plant Physiol., 117: 821-829.
- Rubio-Somoza, I. and D. Weigel, 2011. MicroRNA networks and developmental plasticity in plants. Trends Plant Sci., 16: 258-264.
- Sage R.F, R.W. Pearcy and J.R. Seemann, 1987. The nitrogen use efficiency of C_3 and C_4 plants. Plant Physiol., 85: 355-359.
- Sage, R.F. and X. Zhu, 2011. Exploiting the engine of C₄ photosynthesis. J. Exp. Bot., 62: 2989-3000.
- Sage, R.F., 2004. The evolution of C₄ photosynthesis. New Phytol., 161: 341-370.
- Sawers, R.J., P. Liu, K. Anufrikova, J.T. Hwang and T.P. Brutnell, 2007. A multi-treatment experimental system to examine photosynthetic differentiation in the maize leaf. BMC Genom., 8: 12-12.
- Scafaro, A.P., S. Von Caemmerer, J.R. Evans, B.J. Atwell, 2011. Temperature response of mesophyll conductance in cultivated and wild *Oryza* species with contrasting mesophyll cell wall thickness. Plant Cell Physiol., 34: 1999-2008.
- Scholze, H. and J. Boch, 2011. TAL effectors are remote controls for gene activation. Curr. Opin. Microbiol., 14: 47-53.
- Sheehy, J.E., B. Hardy and P.L. Mitchell, 2000. Redesigning Rice Photosynthesis to Increase Yield. IRRI, Amsterdam, The Netherlands, ISBN: 9789712201462, Pages: 293.
- Sheehy, J.E., 2008. Charting New Pathway to C₄ Rice. World Scientific, Los Banos, Philippines, ISBN: 9789812709516, Pages: 422.
- Springer, P.S., 2000. Gene traps: Tools for plant development and genomics. Plant Cell, 12: 1007-1020.
- Takano, M., H. Kanegae, T. Shinomura, A. Miyao, H. Hirochika and M. Furuya, 2001. Isolation and characterization of rice phytochrome a mutants. Plant Cell, 13: 521-534.
- Taniguchi, M., K. Izawa, M.S. Ku, J.H. Lin and H. Saito *et al.*, 2000. Binding of cell type-specific nuclear proteins to the 5'-flanking region of maize C₄ phosphoenolpyruvate carboxylase gene confers its differential transcription in mesophyll cells. Plant Mol. Biol., 44: 543-557.
- Taniguchi, Y., H. Ohkawa, C. Masumoto, T. Fukuda, T. Tamai *et al.*, 2008. Overproduction of C₄ photosynthetic enzymes in transgenic rice plants: An approach to introduce the C₄-like photosynthetic pathway into rice. J. Exp. Bot., 59: 1799-1809.
- Thakur, V., S. Wanchana, M. Xu, R. Bruskiewich, W.P. Quick, A. Mosig and X.G. Zhu, 2011. Characterization of statistical features for plant microRNA prediction. BMC Genomics, 12: 108.
- Till, B.J., J. Cooper, T.H. Tai, P. Colowit, E.A. Greene, S. Henikoff and L. Comai, 2007. Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol., 7: 19.
- Till, B.J., S.H. Reynolds, C. Weil, N. Springer and C. Burtner *et al.*, 2004. Discovery of induced point mutations in maize by TILLING. BMC Plant Biol., 4: 12.
- Upadhyaya, N.M., Q.H. Zhu, X.R. Zhou, A.L. Eamens and M.S. Hoque *et al.*, 2006. Dissociation (Ds) constructs, mapped Ds launch pads and a transiently-expressed transposase system suitable for localized insertional mutagenesis in rice. Theo. Appl. Genet., 112: 1326-1341.
- Viret, J.F., Y. Mabrouk and L. Bogorad, 1994. Transcriptional photoregulation of cell-type-preferred expression of maize rbcS-m3: 3' and 5' sequences are involved. Proc. Natl. Acad. Sci., 91: 8577-8581.

- Wan, S., J. Wu, Z. Zhang, X. Sun and Y. Lv *et al.*, 2009. Activation tagging, an efficient tool for functional analysis of the rice genome. Plant Mol. Biol., 69: 69-80.
- Ware, D.H., P. Jaiswal, J. Ni, I.V. Yap and X. Pan *et al.*, 2002. Gramene, a tool for grass genomics. Plant Physiol., 130: 1606-1613.
- Wu, C., X. Li, W. Yuan, G. Chen and A. Kilian *et al.*, 2003. Development of enhancer trap lines for functional analysis of the rice genome. Plant J., 35: 418-427.
- Wu, J.L., C. Wu, C. Lei, M. Baraoidan and A. Bordeos et al., 2005. Chemical and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. Plant Mol. Biol., 59: 85-97.
- Yamaki, S., T. Miyabayashi, M. Eiguchi, H. Kitano, K.I. Nonomura and N. Kurata, 2010. Diversity of panicle branching patterns in wild relatives of rice. Breed. Sci., 60: 586-596.
- Yeo, M.E., A.R. Yeo and T.J. Flowers, 1994. Photosynthesis and photorespiration in the genus oryza. J. Exp. Bot., 45: 553-560.
- Yokota, A. and S. Shigeoka, 2008. Engineering Photosynthetic Pathways. In: Bioengineering and Molecular Biology of Plant Pathways, Bohnert, H.J., H.T. Nguyen and N.G. Leewis (Eds.). Pergamon, The Netherlands, pp: 82-99.
- Zeevi, V., Z. Liang, U. Arieli and T. Tzifira, 2012. Zinc finger nuclease and homing endonuclease-mediated assembly of multigene plant transformation vectors. Plant physiol., 158: 132-144.
- Zhao, M., Z. Ding, R. Lafitte, E. Sacks, G. Dimayuga and D. Holt, 2010. Photosynthetic characteristics in *Oryza* species. Photosynthetica, 48: 234-240.
- Zhu, Q.H., M.S. Hoque, E.S. Dennis and N.M. Upadhyaya, 2003. Ds tagging of BRANCHED FLORETLESS 1 (BFL1) that mediates the transition from spikelet to floret meristem in rice (*Oryza sativa* L). BMC Plant Biol., 3: 6-18.
- Zhu, Q.H., K. Ramm, R. Shivakkumar, E.S. Dennis and N.M. Upadhyaya, 2004. The ANTHER INDEHISCENCE1 gene encoding a single MYB domain protein is involved in anther development in rice. Plant Physiol., 135: 1514-1525.